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At rather low temperatures snow is characterized by three velocities of sound, two of which are related to
propagation of longitudinal and transverse waves through a solid skeleton formed by ice crystals and the
third of which is related to propagation of longitudinal waves through air in snow pores. The main laws gov-
erning propagation and absorption of these waves are determined. Analytical formulas that express the de-
pendence of the coefficient of attenuation of waves on frequency are obtained.

Snow is a porous medium that consists of a solid skeleton formed by ice crystals tightly pressed to each other
and air that fills the space between these crystals. Air can freely move through the pores, both in and out.

Near a zero temperature, ice crystals are covered by a water film, which considerably decreases the rigidity of
the solid skeleton, and snow loses elastic properties. As temperature decreases, sintering of crystal grains occurs at the
places of contact; the solid skeleton becomes rigid and acquires the ability to resist deformation under the action of
the applied load. In the case of small short loads and deformations under which the bridges between crystal grains are
not broken, the solid skeleton becomes elastic and longitudinal and transverse waves can propagate through it. More-
over, longitudinal waves can propagate through the air confined in the snow pores. Thus, snow, in contact with ordi-
nary solid bodies, possesses three velocities of sound. Each of these velocities is in a certain manner related to the
main parameters that characterize the elastic properties of snow and its structure. Investigation of these relations is an
important problem of the physics of snow. However, up to now there have been no theoretical and experimental stud-
ies of the laws governing propagation and absorption of different types of waves in snow. These studies are of great
interest and allow one to extend the possibilities of investigation of physicomechanical properties of snow by acoustic
methods.

This work is devoted to investigation of the laws governing propagation of different types of harmonic waves
in an unbounded volume of snow and determination of relations between the parameters of these waves and elastic
characteristics of snow.

Equations of Snow Motion with Account for Friction Forces between the Solid and Gaseous Phases. In
what follows, we consider only dry snow, i.e., snow at temperatures below −(2–3)oC, where ice crystals form a solid
skeleton that possesses elasticity and free spaces between ice crystals are filled by air. In this case, snow, as a two-
component medium, is absolutely similar to water-saturated soil: ice crystals play the role of sand grains that form the
soil skeleton; the role of liquid that fills the pores between sand grains is played by the air confined in snow pores.
Consequently, the equations describing the snow motion will, in many respects, coincide with the equations describing
the motion of water-saturated soil, which were first obtained by Ya. I. Frenkel’ [1].

As is shown in [1], motion of the solid skeleton and air in snow pores, with account for friction forces aris-
ing between them according to the Darcy law, is described by the system of equations

ρ2 
∂v2

∂t
 = K2∇ϕ  − 

η2f

k
 (v2 − v1) , (1)

ρ1 (1 − f ) 
∂v1

∂t
 = (λ + 2µ) ∇θ  + µ∆u + 




1 − f − 

K

K1




 K2∇ϕ  + 

η2f

k
 (v2 − v1) , (2)
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∂
∂t

 (ρ2f ) + div (ρ2fv2) = 0 , (3)

ρ2 = ρ2,0 (1 − ϕ) , (4)

∆f = (1 − f ) 



θ − 

K2

K1
 ϕ




 . (5)

We linearize this system, assuming v1, v2, u, θ, ϕ, and ∆ϕ to be small quantities of the first order of small-
ness, and present f and ρ2 in the form f = f0 + f ′, ρ2 = ρ2,0 + ρ2′ , where f0 is the value of f that corresponds to the
absence of deformation; f ′ and ρ2′  are small additions. Then

ρ1 (1 − f0) 
∂v1

∂t
 = (λ + 2µ) ∇θ  + µ∆u + 




1 − f0 − 

K

K1




 K2∇ϕ  + 

η2f0
k

 (v2 − v1) , (6)

ρ2,0 
∂v2

∂t
 = K2∇ϕ  − 

η2f0
k

 (v2 − v1) , (7)

f0 
∂ρ′

∂t
 + ρ2,0 

∂ (∆f)
∂t

 + ρ2,0f0 div v2 = 0 , (8)

∆f = (1 − f0) 



θ − 

K2

K1
 ϕ




 = 0 . (9)

The coefficients K, µ, and λ in these equations refer to the solid skeleton of snow; they are expressed in
terms of the Young modulus E and the Poisson coefficient σ by the formulas [2]

µ = 
E

2 (1 + σ)
 ,   K = 

E
3 (1 − 2σ)

 ,   λ = 
Eσ

(1 + σ) (1 − 2σ)
 .

In the range of naturally occurring snow densities 100–500 kg/m3, E changes within three orders from 106 to
109 Pa. The Young modulus E weakly depends on temperature: a decrease in temperature from −3oC to −20oC leads
to only a 15–20% increase of it [3]. The Poisson coefficient σ can be taken equal to 0.3. The moduli of three-dimen-
sional compression of ice and air are K1 = 2⋅109 Pa and K2 = 1.4⋅105 Pa, respectively.

Unfortunately, we do not have any data on the coefficients of permeability of different types of snow. How-
ever, in order to estimate the value of this coefficient we can use one of available semi-empirical formulas, e.g., the
Kozeni formula [4], which in our notation is written as

k = 
f
 3δ2

150 (1 − f )2 .

For snow, the coefficient of porosity f changes from 0.2 to 0.7 and δ from 0.05 to 0.5 cm. In this case,
10−7 < k < 6⋅10−3 cm2.

Propagation of Longitudinal and Transverse Vibrations in Snow. In order to obtain the equation describ-
ing propagation of longitudinal waves in snow relating only to variation of a volume element, we must apply the div
operation to Eqs. (6) and (7). It follows from Eq. (8) that
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ρ2,0 
∂
∂t

 div v2 = K2 div ∇ϕ  − 
η2f0

k
 (div v2 − div v1) . (10)

Substituting the value of ∆f from (9) in (8) and allowing for the equality

1
ρ2,0

 
∂ρ′

∂t
 = 

∂
∂t

 




ρ′

ρ2,0




 = − 

∂ϕ
∂t

 ,

we obtain

div v2 = − 




1

f0
 − 1




 
∂θ
∂t

 + 



1 + 





1

f0
 − 1




 
K2

K1




 
∂ϕ
∂t

 , (11)

div v = div 
∂u
∂t

 = 
∂
∂t

 div u = 
∂θ
∂t

 . (12)

Substituting (11) and (12) in Eq. (10) and taking into account that K2
 ⁄ K1 << 1, we have

(1 − f0) 
∂2θ

∂t
2

 − f0 
∂2ϕ

∂t
2

 + f0c2
2∆ϕ + 

ν2f0

k
 




∂θ

∂t
 − 

∂ϕ

∂t




 = 0 , (13)

where ν2 = η2
 ⁄ ρ2,0 is the kinematic coefficient of air viscosity and c2 = √K2

 ⁄ ρ2,0  is the adiabatic velocity of sound
in air.

In the same manner, from Eq. (6) we have

∂2θ

∂t
2

 − c
O

2∆θ − ε 



1 − f0 − 

K

K1




 c2

2∆ϕ + 
εν2f0

k
 




∂θ

∂t
 − 

∂ϕ

∂t




 = 0 , (14)

where ε = (ρ2
 ⁄ ρ) D 10−3–10−2, cl = √ (λ + 2µ) ⁄ ρ , and ρ = ρ1(1 − f0).

Thus, the system of equations (13) and (14) describes propagation of longitudinal waves in snow.
In order to obtain equations describing propagation of transverse waves we apply the rot operation to Eqs. (6)

and (7). Introducing the notation ω1 = 
1
2

 rot v1, ω2 = 
1
2

 rot v2 and allowing for the identities rot ∇ϕ  = 0, rot ∇ u =

∇  rot u, we obtain

∂2ω1

∂t
2

 = ct
2∆ωω1 + 

f0η2

kρ
 




∂ωω2

∂t
 − 

∂ωω1

∂t




 = 0 , (15)

∂ωω2

∂t
 = − 

ν2

k
 (ωω2 − ω1) , (16)

where ct = √µ ⁄ ρ .
Propagation of Longitudinal Harmonic Vibrations in Snow. We seek the solution of Eqs. (13) and (14) in

the form of travelling sinusoidal waves

θ = θ0 exp (i (qx − ωt)) ,   ϕ = ϕ0 exp (i (qx − ωt)) . (17)

Here θ0 and ϕ0 are the amplitudes of vibrations which depend only on the space coordinates.
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Substituting (17) in (13) and (14), we obtain the linear system of equations relative to θ0 and ϕ0. The condi-
tion of compatibility of this system leads to the dispersion equation

c2
2
c
O

2ξ2
 − 


c2

2
 + c

O

2
 + 



1
f0

 − 1


 ε′c2

2
 + (c

O

2
 + εc2

2
 + ε′c2

2) χi

 ξ2

 + 1 + iχ (1 + ε) = 0 ,

where ξ = 
q

ω
, χ = 

ν2

kω
, and ε′ = 




1 − f0 − 

K
K1





ρ2,0

ρ
.

In this equation, the terms involving the factors ε and ε′ are negligibly small; therefore we can write

c2
2
c
O

2ξ4
 − (c2

2
 + c

O

2
 + iχc

O

2) ξ2
 + 1 + iχ = 0 . (18)

Solution of (18) relative to ξ2 gives the following equation:

ξ1,2
2

 = 
1

2c2
2  (m + 1 + iχ) % √(m + 1 + iχ)2 − 4m (1 + iχ) 

  , (19)

where m = cl
2 ⁄ c2

2. With account for the fact that the radicand is (m + 1 + iχ)2 − 4m(1 + iχ) = (m − 1 − iχ)2, (19) takes
on the form

ξ1,2
2

 = 
(m + 1 + iχ) % (m − 1 − iχ)2

2c2
2  .

Hence we have

ξ1 = 
1
c
O

 ,   ξ2 = 
1
c2

 √1 + iχ  .

The wave vector q1 = ωξ1 = 
ω
cl

 refers to the solid skeleton and the wave vector q2 = ωξ2 = 
ω
c2

√1 + iχ  refers

to the air confined in the snow pores.
Thus, the first phase velocity of sound in snow is cl and does not depend on the frequency of vibrations; it

coincides with the velocity of sound propagation in the solid skeleton of snow.
We present the wave vector q2 as

q2 = q2
′  + iq2

′′  ,

where

q2
′  = 

ω
√2  c2

 √√ 1 + χ2  + 1  ;   q2
′′  = 

ω
√2  c2

 √√ 1 + χ2  − 1  .

Here q2′′  = γ2 is the coefficient of absorption of sound in air confined in the pores, and the real part of the
wave number q2′  is related to the phase velocity vp by the formula

vp = 
ω

q2
′
 = 

√2  c2

√√ 1 + χ2  + 1
 . (20)

It is seen from expression (20) that the phase velocity of sound in the snow pores depends on frequency ω
in terms of the parameter χ. This means that air inclusions in snow form a dispersing medium: the velocity of propa-
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gation of a monochromatic wave depends on frequency. The velocity of sound propagation in such medium is equal

to the group velocity vg = 
dω

dq2′
.

Differentiating q2′  with respect to ω, we obtain

dq2
′

dω
 = 

1

√2  c2

 






√√ 1 + χ2  + 1  − 

χ2

2 √ 1 + χ2  √√ 1 + χ2  + 1







 .

Hence, for the group velocity we have the formula

vg = 2 √2  c2 
(1 + χ2)1 ⁄ 4


1 + √ 1 + χ2 


3 ⁄ 2

 . (21)

Thus, the pore velocity of sound in snow depends only on the dimensionless parameter χ and does not de-
pend on the type of snow and its density. In this sense, the process of propagation of sound through air inclusions of
snow possesses self-similarity.

Figure 1 presents the dependence of the pore velocity of sound, which is equal to the group velocity vg, on
χ. An important special feature of this curve is the fact that it does not depend on the type of snow and is universal.

Propagation of elastic vibrations through air inclusions of snow is possible provided only that the distance at

which the wave amplitude decreases e-fold exceeds the wave length λ2 = 
vg

2πω
, i.e., the condition 

2πvg

ω
 < 

1

γ2
 must hold;

this condition can be written as


1 + √ 1 + χ2 


2

χ (1 + χ2)1 ⁄ 4
 > 4π .

Hence we obtain

χ ≤ 0.33 . (22)

On the other hand, the frequency ω cannot be as large as is wished. Its value is limited from above by the require-

ment that the wave length λ2 = 
2πvg

ω
 C 

2πc2

ω
 greatly exceed the linear dimensions of the pores δ, i.e., the condition

Fig. 1. Dependence of the dimensionless pore velocity of sound on the pa-
rameter χ = ν2 ⁄ kω. 
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ω << 
2πc2

δ
(23)

must hold.
Physically, conditions (22) and (23) indicate that propagation of harmonic waves through air inclusions of

snow is possible only under the condition that the snow density be rather small and the frequencies of vibrations not
too large. The estimates show that at k = 10−3–10−6 cm2 the operating range of frequencies at which acoustic meas-
urements in snow can be made is 102–105 Hz.

Transverse Harmonic Vibrations in Snow. Considering the solutions of Eqs. (15) and (16) in the form of
traveling harmonic vibrations, we come to the system of equations




qct

2
 − ω2

 + i 
ν2f0ω

kρ
 ε




 ω1 − i 

ν2f0εω
k

 ω2 = 0 ,

ν2

k
 ω2 − 





ν2

k
 + iω




 ω2 = 0 .

The compatibility condition of this system leads to the dispersion equation

ξ2
ct

2
 (χ + i) = i + χ (1 + f0ε) . (24)

Of the two roots of Eq. (24), only the positive root is physically meaningful. In this case, the wave number
q is determined by the formula

q = q′ + iq′′  = 
ω

ct

 √ 1 + 
f0εχ2

1 + χ2
 − i 

f0εχ

1 + χ
 ,

where

q′ = 
ω

√2  ct

 √√





1 + 

f0εχ2

1 + χ2








2

 + 




f0εχ

1 + χ2





2

+ 1
 C 

ω

ct

 ;

q′′  = γt = 
ω

√2  ct

 √√





1 + 

f0εχ2

1 + χ2








2

 + 




f0εχ

1 + χ2





2

− 1
 C 

ω

√t2  ct

 √f0εχ2

1 + χ2  .

(25)

Thus, the third phase velocity of sound in snow coincides with the transverse velocity of sound propagation
and does not depend on frequency and snow porosity; the coefficient of attenuation of transverse waves is γt D √f0 .

As follows from (25), the amplitude of the transverse wave decreases e-fold at a distance s determined as

s = 
1

γt

 = 
√2  ct

ω
 √1 + χ2

f0εχ2  ,

and the ratio of s to the wave length λt is
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s

λt

 = 
1

√2  π
 √1 + χ2

f0εχ2
 .

Since this ratio must be larger than unity, χ > (1 − 2π2f0ε)−1 ⁄ 2. Here 2π2f0ε D 10−2, consequently, χ > 1 or

ν2

kω
 > 1 . (26)

Condition (26) has quite a definite physical meaning: transverse elastic vibrations can propagate through the
solid skeleton of snow only when snow has a rather large density (the coefficient χ is small). In this case, the parame-
ter χ = 1 serves as a criterion that determines the possibility of propagation of transverse vibrations of the given fre-
quency ω in the unbounded volume of snow.

When 
ν2

kω
 < 1, transverse waves cannot propagate in snow. In the operating range of frequencies of order

103 Hz, which is typical in practice, the coefficient of snow porosity must be larger than 10−4 cm2.
When χ >> 1, to which a larger snow density corresponds, from equality (25) we have

γt C 
ω

√2  ct
 √ρ2

1
ρ

 − 
1
ρ1

 D ω .

Thus, it follows from the studies that snow, as a porous medium, possesses three velocities of sound. Two of
them are almost independent of the porous structure of snow and are determined only by elastic properties of the snow
skeleton and snow density, whereas the pore velocity of sound, i.e., the velocity of propagation of elastic vibrations

through air inclusions of snow, depends only on the dimensionless combination χ = 
ν2

kω
. This fact can be of impor-

tance for developing acoustic methods of determination of the pore velocity of sound in snow and the coefficient of
permeability of snow χ, which plays a significant role in the processes of heat and mass transfer in the snow cover.

In conclusion, we note that the results given above can be fully applied to any porous medium consisting of
solid particles of any shape and size tightly pressed to each other (e.g., grains of grass), the pores between these par-
ticles being filled by air or another gas that can freely pass through the solid skeleton of the medium in any direction.

NOTATION

c2, velocity of sound in air, m/sec; cl and ct, longitudinal and transverse velocities of sound in the snow

skeleton, m/sec; E, Young’s modulus, Pa; f, coefficient of snow porosity; f0, coefficient of porosity of snow in the ab-

sence of deformation; f ′, small additive to f; k, coefficient of snow permeability, m2; K, K1, and K2, moduli of com-

pressibility of snow, ice, and air, Pa; m = cl
2 ⁄ c2

2, dimensionless constant of snow; q, wave number, m−1; q′ and q′′ ,

real and imaginary parts of the wave number q, m−1; q1, wave number for the solid skeleton of snow, m−1; q2, wave

number of air in snow pores, m−1; q2′  and q2′′ , real and imaginary parts of the wave number q2, m−1; u, small displace-

ment of the element of the solid skeleton of snow, m; v1, mean macroscopic velocity of motion of particles of ice

crystals, m/sec; v2, mean macroscopic velocity of motion of air in snow pores, m/sec; vp, phase velocity of sound in

the air confined in the snow pores, m/sec; vg, group velocity (velocity of propagation of sound in the air confined in

the snow pores or pore velocity of sound), m/sec; s, distance at which the amplitude of transverse waves in snow de-
creases e-fold; t, time, sec; x, coordinate, m; γ2, coefficient of absorption of sound in the air confined in the snow
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pores, m−1; γt, coefficient of absorption of transverse waves in snow, m−1; δ, mean size of pores in snow, m; ε =

ρ2

ρ
, small quantity; ε′ = 



1 − f − 

K
K1




 ε, small quantity; θ, relative bulk compression of an element of the structure of

the snow skeleton; θ0, amplitude of vibrations of relative bulk compression of an element of the structure of the snow

skeleton; η2, dynamic coefficient of air viscosity, kg/(m⋅sec); χ = 
ν2

kω
, dimensionless combination; λ, first Lame′  coef-

ficient, Pa; λ2, length of a sound wave propagating through air inclusions in snow, m; λt, length of transverse waves

in snow, m; µ, second Lame′  coefficient, Pa; ν2, kinematic coefficient of air viscosity, m2/sec; ξ = 
q

ω
, ξ1 = 

q1

ω
, and

ξ2 = 
q2

ω
, sec/m; ρ, snow density, kg/m3; ρ1, ice density, kg/m3; ρ2, air density, kg/m3; ρ2,0, density of air in snow

pores in the absence of deformation, kg/m3; ρ2′ , small additive to ρ2, g/m3; σ, Poisson coefficient for snow; ϕ, relative

bulk compression of air in snow pores; ϕ0, amplitude of vibrations of relative bulk compression of pores in snow; ω,

angular frequency of vibrations of the outer force, sec−1; ω1, angular velocity of an element of the solid skeleton of

snow, sec−1; ω2, angular velocity of an element of air inclusions in snow, sec−1; ∆, Laplace operator. Indices: p,

phase; g, group; l, longitudinal; t, transverse.
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